Periodicity Mark Scheme

1. (a) (i) Equation Na₂O + H₂O
$$\Rightarrow$$
 2NaOH (1)
 pH 11-14 (1)

(ii) Equation
$$SO_2 + H_2O \rightarrow H_2SO_3$$
 (1)
pH 0-2 (1)

(b) Covalent oxides → acidic solutions (1)
 ionic oxides → alkaline solutions (1)

2.

(i) Macromolecular/giant covalent/giant molecular 1

4

2 **[6]**

- (ii) Silicon/Si 1
- (iii) e.g. CaO + SiO₂ CaSiO₃ Base 1
 Balanced 1
 [4]

3. (a) (i) SO₂

+4 1

(ii) $4P + 5O_2 \rightarrow 2P_2O_5$ 1 or $P_4 + 5O_2 \rightarrow P_4O_{10}$

(b) (i) B 1

They have low melting points
or there are weak van der Waals forces between molecules 1

(ii) Add water or heat in a flame 1
Test pH check flame colour 1

13/14 yellow 1 **[9]**

4.	(a)	(i)	can form a solution with pH less than 3: P4O ₁₀ or SO ₃ (1)	
		(ii)	can form a solution with with a pH greater than 12: Na2O (1) penalise any wrong answer to zero	2
	(b)	(i)	MgO + 2HNO ₃ \rightarrow Mg(NO ₃) ₂ + H ₂ O or an ionic equation (1)	
			i.e. MgO + 2H ⁺ → Mg ²⁺ + H ₂ O	
			$\underline{not} O^{2-} + 2H^+ \rightarrow H_2O$	
		(ii)	2NaOH + SiO ₂ \rightarrow Na ₂ SiO ₃ + H ₂ O or ionic equation (1)	
			i.e. SiO ₂ + 2OH [−] → 2Na ⁺ + H ₂ O	
		(iii)	$3Na_2O + 2H_3PO_4 \rightarrow 2Na_3PO_4 + 3H_2O$ etc or ionic equation (1)	3
			i.e. Na2O + 2H ⁺ → 2Na ⁺ + H2O	
5.	(a)	(i)	NaOH may be shown as ions. Balanced using H $_2$ or $\frac{1}{2}$ H $_2$	
			$2Na + 2H_2O \rightarrow 2NaOH + H_2$	1
		(ii)	silicon forms a giant covalent / atomic lattice / has a macromolecular structure / has diamond structure (1)	
			contains many covalent bonds / forms 4 bonds per atom / lattice is strong / the bonding is strong / bonds are strong / silicon is non-polar (1)	2
			condone 'bond is strong'	
	(b)	(i)	SiO ₂ / P ₂ O ₅ / P ₄ O ₁₀ / P ₂ O ₃ / P ₄ O ₆ / SO ₂ / SO ₃ / Cl ₂ O / ClO ₂ / Cl ₂ O ₆ / Cl ₂ O ₇	1
		(ii)	Na ₂ O / Na ₂ O ₂ / MgO	1
		(iii)	Al ₂ O ₃ must give formulae	1
	(c)	Wea mol	210 is a molecular (structure) or simple covalent (1) 210 is a molecular forces or van der Waals forces (between ecules) (1) 2 is a macromolecule / giant covalent / giant molecule (1) Not giant lattice	
		(Stro	ong) <u>covalent</u> bonds (between atoms) must be broken (1)	4
		, ,	<u> </u>	