(b) (i)
$$\frac{(124 \times 2) + (126 \times 4) + (128 \times 7) + (130 \times 6)}{19}$$
 or $\frac{2428}{19}$

M1 for top line

<u>127.8</u>

	M2 for correct denominator	1	
	127.8 with no working shown scores 3 marks	1	
Or			

1

1

1

1

1

1

1

1

Mark for 100 dependent on top line correct

<u>127.8</u>

- (ii) Other <u>isotopes</u> present / some <u>isotopes</u> absent / different abundances of <u>isotopes</u>
- (c) $Te^+ + e^{(-)} \rightarrow Te$ *Ignore state symbols Allow Te^{2+} + 2e^{(-)} \rightarrow Te*
- (d) 128
 Only
 Most abundant ion (QoL superlative)

M2 dependent on correct M1

	(e)	2+ ion formed / 2 electrons removed Due to ${}^{128}Te^{2+} = 2$ marks	1
		From ¹²⁸ (Te) Mark independently	1
	(f)	Same If not same $CE = 0/2$	1
		(Each isotope has the) same number of protons / same nuclear charge <u>and</u> same number of electrons / electronic configuration Ignore more neutrons in ¹³⁰ Te	1
			L,
M2. (a)	Silicon	h / Si If not silicon then $CE = 0 / 3$	
		<u>covalent</u> (bonds) <i>M3 dependent on correct M</i> 2	1
		Strong or many of the (covalent) bonds need to be <u>broken</u> / needs a lot of energy to <u>break</u> the (covalent) bonds Ignore hard to break	1
		J	1
	(b)	Argon / Ar If not argon then CE = 0 / 3. But if Kr chosen, lose M1 and allow M2+M3	1
		Large(st) number of protons / large(st) nuclear charge Ignore smallest atomic radius	1
		Same amount of shielding / same number of shells / same number of energy levels	
		Allow Similar Smolding	1

(c) Chlorine / Cl

Not Cl₂, Not CL, Not CP

(d) (i)

1

1

1

1

1

[11]

Or any structure with 3 bonds and 2 lone pairs Ignore any angles shown

Or a structure with 2 bonds and 1 lone pair

Bent / v shape
 Ignore non-linear, angular and triangular
 Apply list principle

(iii)
$$\frac{1}{2}_{Cl_2} + \frac{3}{2}_{F_2} \longrightarrow CIF_3$$

No multiples

Ignore state symbols

M3.(a) 0.943 g water (M1)

If Mr of NiSO₄ wrong, can allow M1 and M3 from method 1 i.e. max 2

NiSO₄ H₂O

$$\frac{1.344}{154.8}$$
 (M2) $\frac{0.943}{18}$ (M3)
(8.68 × 10⁻³ 0.052)
1 6 or $x = 6$ (M4)
Allow Mr = 155

Allow other methods e.g.

$$M_{\rm r} ({\rm NiSO_4}) = 58.7 + 32.1 + 64.0 = 154.8$$

n(NiSO_4) = $\frac{1.344}{154.8} = 0.008682 \text{ mol} (M1)$
 $\frac{2.287}{0.008682} = (263.4) (M2)$
so $18x = 263.4 - 154.8 = (108.6) (M3)$
so $x = \frac{108.6}{18} = 6 (M4)$

If using alternative method and Mr of NiSO₄ wrong, allow ecf to score M2 and M3 only i.e. max 2

4

1

(b) re-heat

Heat to constant mass = 2 marks

check that mass is unchanged M2 dependent on M1 Allow as alternative: M1: record an IR spectrum M2: peak between 3230 and 3550 (cm⁻¹)

[6]

1

1

M4.(a) M1 $550 \times \frac{100}{95}$ = 579 g would be 100% mass Allow alternative methods. There are 4 process marks:

> M2 So $\frac{579}{65}$ = 8.91 moles NaN₃ or $\frac{550}{65}$ = 8.46 moles NaN₃ (this is 95%)

		100	
	M2	So 100% would be $8.46 \times 95 = 8.91 \text{ moles NaN}_3$ 1: mass ÷ 65 2: mass or moles × 100 / 95 or × 1.05 3: moles NaN ₃ × 2 4: moles NaNH ₂ × 39	1
	The	n M3 Moles NaNH ₂ = 8.91 <u>× 2</u> = (17.8(2) moles)	1
	M4	mass NaNH ₂ = 17.8(2) <u>× 39</u>	1
	M5	<u>693</u> or <u>694</u> or <u>695</u> (g) If 693, 694 or 695 seen to 3 sig figs award 5 marks	1
(b)	M1	308 K and 150 000 Pa	1
	M2	n = $\frac{PV}{RT}$ or $\frac{150\ 000 \times 7.5 \times 10^{-2}}{8.31 \times 308}$	1
	М3	= 4.4(0) or 4.395 moles N ₂ Allow only this answer but allow to more than 3 sig figs	1
	M4	Moles NaN ₃ = 4.395 $\times \frac{\frac{2}{3}}{\frac{2}{3}}$ (= 2.93) M4 is for M3 $\times \frac{\frac{2}{3}}{\frac{2}{3}}$	1
	M5	Mass NaN ₃ = (2.93) $\times 65$ M5 is for moles M4 × 65	1
	M6 :	= 191 g Allow 190 to 191 g allow answers to 2 sig figs or more	1

(c) (i) 150 / 65 = 2.31 moles NaN₃ or 2.31 moles nitrous acid

$$\begin{array}{c} 1000\\ Conc = 2.31 \times \begin{array}{c} 1000\\ 500\end{array} \\ M2 \text{ is for } M1 \times 1000 / 500 \\ 1 \\ 4.6(1) \text{ or } 4.6(2) (\text{mol dm}^{-3}) \\ Only \text{ this answer} \\ 1 \\ (ii) 3 \text{ HNO}_2 \longrightarrow \text{ HNO}_{3+2NO+H_2O} \\ Can allow multiples \\ 1 \\ (d) \text{ Ionic} \\ If not ionic \text{ then } CE = 0/3 \\ 0 \text{ possitely charged ions} / \text{Na}^+ \text{ and } \text{N}_3^- \text{ ions} \\ Penalise incorrect ions here but can allow M3 \\ 1 \\ \text{Strong attraction} between (oppositely charged) ions / lots of energy needed to overcome (strong) attractions (between ions) \\ M3 \text{ dependent on } M2 \\ 1 \\ (e) \quad (i) \quad \text{N} \equiv \text{N} \longrightarrow \text{N} \\ Only \\ (ii) \quad CO_2 / \text{N}_2 \text{ / BeF}_2 / \text{HN}_3 \\ Allow \text{ other correct molecules} \\ 1 \\ (iii) \quad MgN_6 \\ Only \\ 1 \\ \end{array}$$

[21]

(b) (i) Hydrogen bond(ing) / H bonding / H bonds

M5.(a)

OR

1 mark for all lone pairs 1 mark for partial charges on the O and the H that are involved in H bonding 1 mark for the H-bond, from $H\delta$ + on one molecule to lone pair on O of other molecule

3

(c) Electronegativity of S lower than O or electronegativity difference between H and S is lower

Mark independently

1

1

No hydrogen bonding between H₂S₂ molecules

Or <u>only</u> van der Waals / <u>only</u> dipole-dipole forces <u>between H_2S_2 molecules</u> If breaking covalent bonds CE = 0

[7]

1

M2 - Moles calcium phosphate = $\frac{7.26}{M1}$ (= 0.0234)

0.0234 moles can score M1 and M2. $\frac{7.26}{M1}$ If M_r incorrect, can score M2 for M1.

- M3 Moles phosphoric acid = $2 \times 0.0234 = 0.0468$ Allow student's M2 × 2. If not multiplied by 2 then lose M3 and M5.
- 1

1

1

M4 - Vol phosphoric acid = 0.038(0) dm³ If not 0.038(0) dm³ then lose M4 and M5.

Conc phosphoric acid = $\frac{0.0468}{0.038(0)}$

M5 = <u>1.23</u> (mol dm⁻³) This answer only – unless arithmetic or transcription error that has been penalised by 1 mark. Allow no units but incorrect units loses M5.

1

2

(ii) $\frac{492.3}{688.3} \times 100$ OR $\frac{492}{688} \times 100$

 $3Ca(OH)_2 + 2H_3PO_4 \longrightarrow Ca_3(PO_4)_2 + 6H_2O$

1 mark for both M_r correctly placed.

= 71.5%

(b)

Allow M2 and / or M3 to 2 significant figures here but will lose M5 if answer not 1.23.

(C) Са н Ρ 0 1.67 0.17 2.59 5.<u>33</u> 40.1 31 16 1 = 0.042 0.17 0.084 0.333 4 2 8 1

> If x = 2 with no working, allow M4 only. Ca = 1.67 g (M1).

Mark for dividing by correct A_r in Ca and P (M2). If M1 incorrect can only score M2.

Correct ratio (M3).

CaH₄P₂O₈ **OR** Ca(H₂PO₄)₂ **OR** x = 2Value of x or correct formula (M4).

Alternative

Ca

 H_2PO_4 Ca = 1.67 g (M1). $\frac{1.67}{40.1}$ $\frac{8.09}{97.0}$ Mark for dividing by correct A, / M, in Ca and H_2PO_4 (M2). If M1 incorrect can only score M2. = 0.042 0.083 1 2 Correct ratio (M3).

CaH₄P₂O₈ **OR** Ca(H₂PO₄)₂ **OR**
$$x = 2$$

Value of x or correct formula (M4).

[12]

1

1

1

1

1

M8. D	[1]
M9 .C	[1]
M10.B	[1]
M11. A	[1]
M12.D	[1]
M13.B	[1]
M14.B	[1]
M15.C	

[1]

M16.A

M17.B

[1]

[1]