1. $CH_4 - VdW$'s $SiH_4 - VdW$'s $SnH_4 - VdW$'s \therefore B.p. $CH_4 < SiH_4 < SnH_4$

NH₃ - Hydrogen bonding PH₃ - VdW's AsH₃ - VdW's
 ∴ B.p. PH₃ < AsH₃ < NH₃ - Hydrogen bonding

 $\begin{tabular}{lll} {\bf 3.} & {\it HF-Hydrogen bonding} & {\it HCI-dipole dipole} & {\it HBr-dipole dipole} \\ \end{tabular}$

∴ B.p. HBr < HCl < HF

4. CH_3F – dipole dipole CH_3CI – dipole dipole CH_4 – VdW's

 \therefore B.p. $CH_4 < CH_3F < CH_3CI$

 ${\rm 5.} \quad {\rm HF-Hydrogen\ bonding} \qquad \qquad {\rm H_2O-Hydrogen\ bonding} \qquad \qquad {\rm NH_3-Hydrogen\ bonding}$

 \therefore B.p. NH₃ < HF < H₂O

(a)		M1	Electron arrangement = 1s ² 2s ² 2p ⁶ 3s ² 3p ⁴ [accept upper case letters and subscripted numbers]	1
		M2	Element E = S / sulphur [Not conseq] [Not tied to M1]	1
(b)	(i)	M1	Tendency / strength / ability / power of an atom / element / nucleus to attract / withdraw electrons / e- density / bonding pair / shared pair	1
		M2	In a <u>covalent</u> bond / shared/bonding pairs (tied to M1 – unless silly slip in M1 – e.g. e ⁻ retained/e ⁻ cloud/single e ⁻ /missing, e.g. 'atom') [CE if ions / <u>into</u> covalent bonds / lone pair / remove e ⁻ = 0]	1
	(ii)	М3	Trend in electronegativity = increasing [Decrease/stays same = CE = 0] [allow 'general increase' but mention of deviations = 'con' M3]	1
		M4	Increasing number of protons across period / inc nuclear charge [Not increased atomic number / effective nuclear charge]	1
		M5	Smaller size / bonding e- closer to nucleus /same shells / same shielding [Not molecules]	1
(c)	(i)	M1	F more electronegative (than H) / F is very/highly electronegative / reference to electronegativity difference / bonding electrons more attracted towards F [Not δ +/ δ -]	1
	(ii)	M2	Trend = decreasing polarity [Increase/stays same = CE = 0]	1
		МЗ	Because electronegativity (difference) decreases	1
(d)	(i)	M1	HF has hydrogen bonding / allow H-bonding [Not H and F have H-bonding] [lons = CE = 0] [covalent bonds break = CE for M2 & M3]	1
		M2	Other HX have van der Waals'/dipole-dipole	1
		МЗ	Hydrogen bonding stronger than other imf's / is strongest /	

	(ii)	M4	more energy to overcome / contra arguments van der Waals' forces / London forces / temporary / induced dipole-dipole / dispersion forces [if "imf's" here <u>but clarified</u> by vdW mention in (d)(i), allow] [ignore dipole-dipole unless its trend said to be increasing, then 'con' M4] [Not 'fluctuating']	1
		M5	increase with size $/M_r$ / number of e ⁻ s / surface area [M5 tied to van der Waals']	1
		M6	size $/M_{\rm r}$ / number of e-s / surface area increase (HCl to HI) / atomic size	1
(e)	(i)	M1	e cloud distorted /e s or e density unequally distributed / more –ve one side than other [Atoms = CE = 0]	1
	(ii)	M2	High charge density / high charge / small size [Not small atomic radius]	1

Total 18