Equilibrium Questions

1 What would be the effect, on the yield and the reaction rate, of increasing pressure on these reactions:

(a) $4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$ (b) $2NO_2(g)) \rightleftharpoons N_2O_4(g)$ (c) $H_2(g) + I_2(g)) \rightleftharpoons 2HI(g)$

- 2 What would be the effect of decreased temperature on these reactions? State the effect on the yield and the reaction rates.
 - (a) $4NH_3(g) + 5O_2(g) \Rightarrow 4NO(g) + 6H_2O(g)$. Reaction enthalpy = -905 kJ mol⁻¹
 - **(b)** $CaCO_3(s)$ $) \rightleftharpoons CaO(s) + CO_2(g)$. This reaction is endothermic.
 - (c) Acid + alcohol) \rightleftharpoons ester + water. The reaction enthalpy is zero.
- 3 Ammonia is produced in large quantities to make fertilizers. It is made by the Haber process: N₂(g) + 3H₂(g)) ⇒ 2NH₃(g). This reaction is exothermic.
 - (a) If the reaction was at equilibrium, what would happen to the yield of ammonia if
 - (i) the temperature was increased?
 - (ii) the pressure was increased?
 - (iii) a catalyst was added?
 - (b) What would happen to the reaction rate if
 - (i) the temperature was increased?
 - (ii) the pressure was increased?
 - (iii) a catalyst was added?
 - (c) What would be the optimum conditions for the production of ammonia? Remember the best yield must be obtained at the fastest rate.