M1.(a) In either order

For M1 accept [] for concentration

M1 <u>Concentrations</u> (of reactants and products) remain or stay constant / the same NOT "equal concentrations" and NOT "concentration(s) is / are the same"

M2 Forward rate = Reverse / backward rate

NOT "amount"

Ignore "dynamic" and ignore "speed"

Ignore "closed system"

It is possible to score both marks under the heading of a single feature

2

(b) M1 Catalysts increase rate of / speed up both forward and reverse / backward reactions

If M1 is given as "no effect" / "no change" then CE= 0 for clip

M2 increase in <u>rate</u> / affect on <u>rate / speed</u> is <u>equal / the same</u> *Ignore references to "decrease in rate"*

2

- (c) (i) M1 (The yield) increases / goes up / gets more

 If M1 is given as "decreases" / "no effect" / "no change" then

 CE= 0 for clip, but mark on from a blank.
 - M2 There are <u>more moles / molecules</u> (of gas) on the left / of reactants Ignore "volumes", "articles" "atoms" and "species" for M2

OR fewer moles / molecules (of gas) on the right / products

OR there are 4 moles / molecules (of gas) on the left and 2 moles / molecules on the right.

OR (equilibrium) shifts / moves to the side with less moles / molecules

M3 Can only score M3 if M2 is correct

The <u>equilibrium shifts / moves</u> (from left to right) to <u>oppose the increase in pressure</u>

For M3, not simply "to oppose the change"

For M3 credit the <u>equilibrium</u> <u>shifts / moves</u> to <u>lower / decrease</u> the <u>pressure</u>

(There must be a <u>specific</u> reference to the change that is opposed)

3

- (ii) M1 The yield decreases / goes down / gets less

 If M1 is given as "increase" / "no effect" / "no change" then

 CE= 0 for clip, but mark on from a blank.
 - M2 (Forward) reaction is exothermic OR gives out / releases heat

OR

reverse reaction is endothermic OR takes in / absorbs heat

Can only score M3 if M2 is correct

The equilibrium shifts / moves (from right to left) to oppose the increase in temperature

For M3, not simply "to oppose the change"

For M3 credit the equilibrium shifts / moves

to absorb the heat OR

to cool the reaction OR

to lower the temperature

(There must be a <u>specific</u> reference to the change that is opposed)

3

(d) (i) Must be comparative

Credit correct reference to rate being too (s)low / (s)lower at temperatures less than 600 K

Higher rate of reaction

OR increase / speed up the rate (of reaction)

Ignore statements about the "yield of ammonia"

OR Gets to equilibrium faster/ quicker

OR faster or quicker rate / speed of attainment of equilibrium

1

(ii) <u>Less</u> electrical <u>pumping cost</u>

Not just "less expensive" alone

OR

Not just "less energy or saves energy" alone

Use lower pressure <u>equipment / valves / gaskets / piping</u> etc.

Credit correct <u>qualified</u> references to higher pressures

OR

Uses less expensive <u>equipment</u> *Ignore references to safety*

M2. (a) Forward and backward reactions proceeding at equal rate

1

Amount (Conc or moles or proportion) of reactants and products remain constant

Not "reactants and products have equal conc"

1

(b) M1
$$\frac{[R]^2}{[P][Q]^2}$$

Allow () but must have all brackets

If Kc wrong can only score M3 (process mark)
for dividing both R and P by volume)

1

(c) M2 [Q]₂ =
$$\frac{[R]^2}{k_0[P]}$$

Rearrangement of correct Kc expression

If wrong Kc used can only score M3 for correct use of vol

If wrong rearrangement can only score max 2 for M3 and M5

for correct √

1

M3 [Q]² =
$$\frac{(5.24/10)^2}{68.0 \times (3.82/10)}$$

Process mark for dividing both R and P by volume even in incorrect expression

If vol missed can only score max 2 for **M2** and M5 for correct $\sqrt{}$

If vol used but then wrong maths can score M2 M3 and M5 for correct $\sqrt{}$

If moles used wrongly, eg (2 \times 5.24) or (5.24 \times 10/10 \circ) can only score **M2** and **M5**

1

M4 $[Q]^2 = 0.0106$

Correct calculation of Q2

1

M5[Q] = 0.10(3)

Correct taking of √

1

(c) cont.

Wrong rearrangement and no use of volume

a

Wrong rearrangement

For Correct use of volume M3 and Correct taking of square root M5

2 max

No use of volume

2 max

answer = 0.325

Ignore subsequent multiplying or dividing by 10.

0.0325 or 3.25 still score max 2

For Correct rearrangement M2 and

Correct taking of square root M5

2 max

Use of volume but maths error e.g. using (5.24)²/10 when should be (5.24/10)²

Scores 3

also giving answer 0.325

for M2, M3 and M5

3

Use of volume but Q/10 also used or Q multiplied by 10 at end (i.e.muddling moles with concentration)

Gives answer 1.03

For Correct rearrangement M2 and

Correct taking of square root M5

2 max

Wrong use of moles, e.g (5.24×2) or $(5.24 \times 10/10^{s})$

For Correct rearrangement **M2** and Correct taking of square root **M5**

2 max

1 max

[24]

Wrong Kc used, e.g. missing powers For Correct use of volume M3

(d) Increase or more or larger Allow moves to left 1 (e) Increase or more or larger Allow moves to left 1 (f) Decrease or less or smaller NOT allow moves left 1 (g) No effect or unchanged or none 1 (h) 0.0147 or 0.0148 or 1.47×10^{-2} or 1.48×10^{-2} Allow 0.015 or 1.5 × 10-2 If not 0.0147, look at (c) for conseq correct use of their [Q] in new Kc = $1.39 \times [Q]^2$ Not allow just 1/68.0 ignore units 1

M3. (a) (i) M1 The peak of the new curve is displaced to the right.

M2 All of the following are required

- The new curve starts at the origin
- The peak of the new curve is <u>lower</u> than the original
- and the new curve only crosses the original curve once
- and an attempt has been made to draw the new curve

correctly towards the energy axis but not to touch the original curve

the new curve must not start to diverge from the original curve
 M1 is low demand
 M2 is higher demand.

2

- (ii) M1 Increase in the number/proportion of molecules with $E \ge E_a$
 - OR more molecules have $E \ge E$.
 - OR more molecules have sufficient energy to react
 - M2 More effective/productive/successful collisions

Ignore "molecules have more energy"

Ignore "more energetic collisions"

Ignore "molecules gain activation energy"

Ignore "more collisions"

Accept "particles" for "molecules" but NOT "atoms"

Ignore "chance of collision"; this alone does not gain M2

2

(b) (i) Iron OR Fe

1

(ii) M1 Catalysts provide an alternative route/pathway/mechanism

OR

(in this case) surface adsorption/surface reaction occurs.

For M1. not simply "provides a surface" alone

M2 that has a lower activation energy

OR

lowers the activation energy

For M2, the candidate may use a definition of activation energy without referring to the term

2

M4. (a) Heat (energy) change at constant pressure

Ignore references to standard conditions, but credit specified pressure.

1

(b) The <u>enthalpy change/heat (energy) change</u> (at constant pressure) in a reaction is independent of the route/path taken (and depends only on the initial and final states)

1

3

(c) $\Delta H + 963 = -75 - 432 \text{ OR } \Delta H + 963 = -507 \text{ (M1)}$

 $\Delta H = -75 - 432 - 963$ (M1 and M2)

 $\Delta H = -1470 \text{ (kJ mol-1)}$

Award 1 mark for + 1470

Award full marks for correct answer

Ignore units.

Ignore numbers on the cycle

M1 and M2 can score for an arithmetic error

[5]

M5.(a) Hydrogen bonding / hydrogen bonds / H-bonding / H-Bonds *Not just hydrogen.*

1

(b)

One mark for minimum of 4 correct partial charges shown on the N-H and O-H

One mark for the 3 lone pairs.

One mark for H bond from the lone pair on O or N to the H⁵

OR

The N-H-O should be linear but can accept if the lone pair on O or N hydrogen bonded to the H If wrong molecules or wrong formula, CE = 0/3

(c) (Phosphine) does not form hydrogen bonds (with water)

1 [5]

3

M6. Ideal gas equation: pV = nRT (1)

Calculation: n = pV/RT =
$$\frac{103000 \times 127 \times 10^{-6}}{(8.31 \times 415)}$$
 (1)

mark for volume conversion fully correct

range 3.79 × 10-9 to 3.8 × 10-9

 $M_r = m/n = .304/3.79 \times 10^{-3} = 80.1 (1)$

range 80 - 80.3 min 2 s.f. conseq

If 'V' wrong lose M2; 'p' wrong lose M3; 'inverted' lose M3

and M4

[5]

M7.A

[1]

M8.D

[1]

M9.Divides percentage by price

Ratios are 1.668, 1.701 and 1.437

Dub-Lit Brick Cleaner is the best value

Allow if divides price by percentage (ratios are 0.600, 0.588 and 0.696).

Lose mark if no working shown or contains an arithmetic error.

[1]

M10.A

[1]

