Amino Acids, Protein and DNA Answers

Q	Part	Sub Part	Marking Guidance	Mark	Comments
6	(a)	(i)	hydrolysis	1	not hydration
6	(a)	(ii)	2-aminopropanoic acid	1	ignore alanine QoL
6	(a)	(iii)	CH(CH ₃) ₂ + H ₃ N—C—COO ⁻ H	1	allow –CO ₂ ⁻ allow [†] NH ₃ – don't penalize position of + on NH ₃
6	(a)	(iv)	COOH +	1	allow –CO ₂ H allow ⁺ NH ₃ – don't penalize position of + on NH ₃
6	(b)	(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	allow $-CO_2H$ allow limit as $-C$ CH_2^lOH + on N or outside []
6	(b)	(ii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	allow $-CO_2H$ allow $-CONH-$ or $-COHN-$ allow NH_2- allow limit as $-C CH_2OH$

Question	Part	Sub Part		Mark	Comments
6	(a)	(i)	H_3 N $-C$ C $-COO$ C H_3	1	allow –CO ₂ ⁻ allow ⁺ NH ₃ – don't penalize position of + on NH ₃
6	(a)	(ii)	H ₂ N—C—COO CH(CH ₃) ₂	1	allow $-CO_2^-$ allow NH_2- allow C_3H_7
6	(a)	(iii)	H + H ₃ N—C—COOH + (CH ₂) ₄ NH ₃	1	allow –CO ₂ H allow ⁺ NH ₃ – don't penalize position of + on NH ₃
6	(b)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	allow $-CO_2H$ allow NH_2- allow C_3H_7 allow as zwitterions if error in peptide link e.g. O H C C O N if twice, penalise both times not polymers if wrong amino acid in both can score Max 1

6	(c)	chromatography or electrophoresis	1	ignore qualification to chromatography

Question	Part	Sub Part	Marking Guidance	Mark	Comments
6	(a)		$Pt(NH_3)_2CI_2 + H_2O \rightarrow [Pt(NH_3)_2CI(H_2O)]^+ + CI^-$		
			Correct product	1	
			Balanced equation	1	
6	(b)	(i)	Hydrogen bond	1	
			Oxygen (or nitrogen)	1	Only score this mark if type of bond is correct
6	(b)	(ii)	Co-ordinate	1	
			Nitrogen (or oxygen)	1	Bond type must be correct to score this mark but allow M2 if bond is covalent
6	(c)		Killing them or causing damage (medical side effects)	1	Allow any correct side effect (e.g. hair loss) Allow kills healthy (or normal) cells
			May attach to DNA in normal cells	1	, alow kills reduiting (of normal) cells

Question	Marking Guidance		Mark	Comments
7(a)	Heating speeds up (hydrolysis / breaking of peptide bonds) OR forms non-sweet (amino acids)			
7(b)	(2-)aminobutan <u>e</u> dioic acid OR (2-)aminobutan <u>e</u> (-1,4-)dioic acid			2 not necessary but penalise other numbers at start 1,4 not necessary but penalise other numbers and 1,4 must be in correct place (QoL)
7(c)	H H ₂ N—C—COO CH ₂ COO			allow –CO ₂ ⁻ allow NH ₂ –
7(d)	-CH ₂ -C-H COO		1	allow $-CO_2^-$ allow ${}^+NH_3^-$ don't penalize position of + on NH_3
7(e)(i)	Compounds/molecules with same structural formula But with bonds/atoms/groups arranged differently in space or in 3D	M1 Independent marks M2	1	Not just structure Allow -with different spatial arrangement of atom/bond/group
7(e)(ii)	(Plane) polarised light <u>Rotated</u> in opposite directions		1 1	Not bent or turned or twisted; not different directions (QoL)

Question	Marking Guidance	Mark	Comments
6(a)	H H ₃ C—C—COO + NH ₃	1	Allow –NH ₃ ⁺ and ⁺ NH ₃ –
6(b)	H H ₃ C—C—COOCH ₃ NH ₂	1	Allow protonated form, i.e. $-NH_3^+$ or $^+NH_3^-$
6(c)	COO H—C—CH ₂ COO NH ₂	1	Allow – CO ₂ ⁻
6(d)	COOH COOH	1	Allow zwitterion with any COO ⁻ Allow use of "wrong" COOH COOH COOH CH ₂ H ₂ N—C-CH ₂ —C—N—C—COOH H O H H O H H

Question	Marking Guidance	Mark	Comments
7(a)(i)	coo -	1	Allow CO ₂ ⁻ and NH ₂ ⁺
7(a)(ii)	NOTE – Two marks for this clip CH ₃ COOH H H ₃ C H ₂ N M2	1	M1 for alanine section bonded through N M2 for alanine section bonded through C But penalise error in proline ring Allow MAX 1 for correct tripeptide in polymer structure
7(b)(i)	3-methylpent-2-ene	1	Ignore <i>E-Z</i> , commas, spaces or missing hyphens
7(b)(ii)	4-amino-3-methylbutanoic acid	1	Ignore commas, spaces or missing hyphens

4e(ii)	PGA sutures react/dissolve/break down/are biodegradable/ are hydrolysed / attacked by water or nucleophiles /no need to remove (Ester links have) polar bonds	1	OR Polypropene not biodegradeable/ not hydrolysed / not attacked by water/nucleophiles polypropene contains non-polar bonds ignore intermolecular forces	
Total		16		

Question	Answers	Mark	Additional Comments/Guidance	ID details
5a(i)	CH ₃ O H H O H H O H C C N C	2	Only one molecule of each used M1 for 2 amide links	
	O H H OR O H CH ₃		M2 CH ₂ and CH(CH ₃) Allow 1 mark after one error	
	O H H O CH ₃ H H		Dipeptide max 1 Treat both trailing bonds missing as one error Ignore <i>n</i>	

5a(ii)	$ \begin{array}{c} $	1	No need to show Ip The covalent bond and the hydrogen bond either side of the H must be linear. Allow
5b(i)	2-amino-4-methylpentan(-1-)oic acid	1	Ignore hyphens, commas, spaces
5b(ii)	H HOCH ₂ —C—COO +NH ₃	1	Allow -NH ₃ ⁺
5b(iii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
5b(iv)	$\begin{array}{c} H \\ \\ HOOC(CH_2)_2 - C - COOH \\ \\ + NH_3 \end{array}$	1	Allow -NH ₃ ⁺
Total			7