Amino Acids, Protein and DNA Answers | Q | Part | Sub
Part | Marking Guidance | Mark | Comments | |---|------|-------------|---|------|--| | 6 | (a) | (i) | hydrolysis | 1 | not hydration | | 6 | (a) | (ii) | 2-aminopropanoic acid | 1 | ignore alanine
QoL | | 6 | (a) | (iii) | CH(CH ₃) ₂
+
H ₃ N—C—COO ⁻

H | 1 | allow –CO ₂ ⁻
allow [†] NH ₃ –
don't penalize position of + on NH ₃ | | 6 | (a) | (iv) | COOH
+ | 1 | allow –CO ₂ H
allow ⁺ NH ₃ –
don't penalize position of + on NH ₃ | | 6 | (b) | (i) | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 | allow $-CO_2H$ allow limit as $-C$ CH_2^lOH + on N or outside [] | | 6 | (b) | (ii) | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 | allow $-CO_2H$ allow $-CONH-$ or $-COHN-$ allow NH_2- allow limit as $-C CH_2OH$ | | Question | Part | Sub
Part | | Mark | Comments | |----------|------|-------------|---|------|--| | 6 | (a) | (i) | H_3 N $-C$ C $-COO$ C H_3 | 1 | allow –CO ₂ ⁻
allow ⁺ NH ₃ –
don't penalize position of + on NH ₃ | | 6 | (a) | (ii) | H ₂ N—C—COO

 CH(CH ₃) ₂ | 1 | allow $-CO_2^-$
allow NH_2-
allow C_3H_7 | | 6 | (a) | (iii) | H
+
H ₃ N—C—COOH
 +
(CH ₂) ₄ NH ₃ | 1 | allow –CO ₂ H
allow ⁺ NH ₃ –
don't penalize position of + on NH ₃ | | 6 | (b) | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 | allow $-CO_2H$ allow NH_2- allow C_3H_7 allow as zwitterions if error in peptide link e.g. O H C C O N if twice, penalise both times not polymers if wrong amino acid in both can score Max 1 | | 6 | (c) | chromatography or electrophoresis | 1 | ignore qualification to chromatography | |---|-----|-----------------------------------|---|--| | Question | Part | Sub
Part | Marking Guidance | Mark | Comments | |----------|------|-------------|---|------|--| | 6 | (a) | | $Pt(NH_3)_2CI_2 + H_2O \rightarrow [Pt(NH_3)_2CI(H_2O)]^+ + CI^-$ | | | | | | | Correct product | 1 | | | | | | Balanced equation | 1 | | | 6 | (b) | (i) | Hydrogen bond | 1 | | | | | | Oxygen (or nitrogen) | 1 | Only score this mark if type of bond is correct | | 6 | (b) | (ii) | Co-ordinate | 1 | | | | | | Nitrogen (or oxygen) | 1 | Bond type must be correct to score this mark but allow M2 if bond is covalent | | 6 | (c) | | Killing them or causing damage (medical side effects) | 1 | Allow any correct side effect (e.g. hair loss) Allow kills healthy (or normal) cells | | | | | May attach to DNA in normal cells | 1 | , alow kills reduiting (of normal) cells | | Question | Marking Guidance | | Mark | Comments | |----------|--|----------------------------------|--------|---| | 7(a) | Heating speeds up (hydrolysis / breaking of peptide bonds) OR forms non-sweet (amino acids) | | | | | 7(b) | (2-)aminobutan <u>e</u> dioic acid OR (2-)aminobutan <u>e</u> (-1,4-)dioic acid | | | 2 not necessary but penalise other numbers at start 1,4 not necessary but penalise other numbers and 1,4 must be in correct place (QoL) | | 7(c) | H
H ₂ N—C—COO
CH ₂
COO | | | allow –CO ₂ ⁻ allow NH ₂ – | | 7(d) | -CH ₂ -C-H
COO | | 1 | allow $-CO_2^-$
allow ${}^+NH_3^-$
don't penalize position of + on NH_3 | | 7(e)(i) | Compounds/molecules with same structural formula But with bonds/atoms/groups arranged differently in space or in 3D | M1
Independent
marks
M2 | 1 | Not just structure Allow -with different spatial arrangement of atom/bond/group | | 7(e)(ii) | (Plane) polarised light <u>Rotated</u> in opposite directions | | 1
1 | Not bent or turned or twisted; not different directions (QoL) | | Question | Marking Guidance | Mark | Comments | |----------|--|------|---| | 6(a) | H
H ₃ C—C—COO
+ NH ₃ | 1 | Allow –NH ₃ ⁺ and ⁺ NH ₃ – | | 6(b) | H
H ₃ C—C—COOCH ₃

NH ₂ | 1 | Allow protonated form, i.e. $-NH_3^+$ or $^+NH_3^-$ | | 6(c) | COO
H—C—CH ₂ COO
NH ₂ | 1 | Allow – CO ₂ ⁻ | | 6(d) | COOH COOH | 1 | Allow zwitterion with any COO ⁻ Allow use of "wrong" COOH COOH COOH CH ₂ H ₂ N—C-CH ₂ —C—N—C—COOH H O H H O H H | | Question | Marking Guidance | Mark | Comments | |----------|--|------|---| | 7(a)(i) | coo - | 1 | Allow CO ₂ ⁻ and NH ₂ ⁺ | | 7(a)(ii) | NOTE – Two marks for this clip CH ₃ COOH H H ₃ C H ₂ N M2 | 1 | M1 for alanine section bonded through N M2 for alanine section bonded through C But penalise error in proline ring Allow MAX 1 for correct tripeptide in polymer structure | | 7(b)(i) | 3-methylpent-2-ene | 1 | Ignore <i>E-Z</i> , commas, spaces or missing hyphens | | 7(b)(ii) | 4-amino-3-methylbutanoic acid | 1 | Ignore commas, spaces or missing hyphens | | 4e(ii) | PGA sutures react/dissolve/break down/are biodegradable/ are hydrolysed / attacked by water or nucleophiles /no need to remove (Ester links have) polar bonds | 1 | OR Polypropene not biodegradeable/ not hydrolysed / not attacked by water/nucleophiles polypropene contains non-polar bonds ignore intermolecular forces | | |--------|--|----|--|--| | Total | | 16 | | | | Question | Answers | Mark | Additional Comments/Guidance | ID
details | |----------|---|------|--|---------------| | 5a(i) | CH ₃ O H H O H H O H C C N C | 2 | Only one molecule of each used M1 for 2 amide links | | | | O H H OR O H CH ₃ | | M2 CH ₂ and CH(CH ₃) Allow 1 mark after one error | | | | O H H O CH ₃ H H | | Dipeptide max 1 Treat both trailing bonds missing as one error Ignore <i>n</i> | | | 5a(ii) | $ \begin{array}{c} $ | 1 | No need to show Ip The covalent bond and the hydrogen bond either side of the H must be linear. Allow | |---------|---|---|--| | 5b(i) | 2-amino-4-methylpentan(-1-)oic acid | 1 | Ignore hyphens, commas, spaces | | 5b(ii) | H
HOCH ₂ —C—COO
+NH ₃ | 1 | Allow -NH ₃ ⁺ | | 5b(iii) | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 | | | 5b(iv) | $\begin{array}{c} H \\ \\ HOOC(CH_2)_2 - C - COOH \\ \\ + NH_3 \end{array}$ | 1 | Allow -NH ₃ ⁺ | | Total | | | 7 |