Periodicity Answers

Qu	Part	Sub Part	Marking Guidance	Mark	Comments
2	а		Cross between the Na cross and the Mg cross	1	
2	b		$\begin{array}{rcl} AI(g) \rightarrow & AI^{+}(g) + & e-\\ AI(g) & - & e- \rightarrow & AI^{+}(g)\\ AI(g) + & e- \rightarrow & AI^{+}(g) + & 2e- \end{array}$	2	One mark for state symbols consequential on getting equation correct. Electron does not have to have the – sign on it Ignore (g) if put as state symbol with e^- but penalise state symbol mark if other state symbols on e^-
2	С		2 nd / second / 2 / II	1	Only
2	d		Paired electrons <u>in (3)p orbital</u> repel	1	Penalise wrong number If paired electrons repel allow M2
2	е		Neon/ Ne	1	No consequential marking from wrong element
			1s ² 2s ² 2p ⁶ / [He}2s ² 2p ⁶	1	Allow capital s and p Allow subscript numbers
2	f		Decreases	1	CE if wrong
			Atomic radius increases/ electron removed further from nucleus or nuclear charge/ electron in higher energy level/ Atoms get larger/ more shells As group is descended more shielding	1	Accept more repulsion between more electrons for M2 Mark is for distance from nucleus Must be comparative answers from M2 and M3 CE M2 and M3 if mention molecules Not more sub-shells

Question	Part	Sub Part	Marking Guidance	Mark	Comments
1	(a)		2s ² 2p ⁶ 3s ¹	1	1s ² can be rewritten Allow $2s^22p_x^22p_y^22p_z^23s^1$ Allow subscripts and capitals
1	(b)	(i)	Energy/enthalpy (needed) to remove one mole of electrons from one mole of atoms/compounds/molecules/elements <i>OR</i>	1	Energy given out loses M1 M2 is dependent on a reasonable attempt at M1
			Energy to form one mole of positive ions from one mole of atoms <i>OR</i> Energy/enthalpy to remove one electron from one atom		Energy needed for this change $X(g) \rightarrow X^+(g) + e^{(-)} = 2$ marks This equation alone scores one mark
			In the gaseous state (to form 1 mol of gaseous ions)	1	
1	(b)	(ii)	$\begin{array}{l} Mg^{+}(g) \rightarrow Mg^{2+}(g) \ + e^{(-)} \\ Mg^{+}(g) + e^{(-)} \rightarrow Mg^{2+}(g) \ + 2e^{(-)} \\ Mg^{+}(g) - e^{(-)} \rightarrow Mg^{2+}(g) \end{array}$	1	Do not penalise MG Not equation with X
1	(b)	(iii)	Electron being removed from a positive ion (therefore need more energy)/ electron being removed is closer to the nucleus/Mg ⁺ smaller (than Mg)/Mg ⁺ more positive than Mg	1	Allow from a + particle/ species Not electron from a higher energy level/or higher sub-level More protons = 0
1	(b)	(iv)	Range from 5000 to 9000 kJ mol ⁻¹	1	
1	(C)		Increase Bigger nuclear <u>charge</u> (from Na to CI)/more <u>protons</u>	1	If decrease CE = 0/3 If blank mark on QWC
			electron (taken) from same (sub)shell/ similar or same shielding/ electron closer to the nucleus/smaller atomic radius	1	If no shielding = 0 Smaller ionic radius = 0

1	(d)	Lower	1	If not lower CE = 0/3
		Two/pair of electrons in (3)p orbital or implied repel (each other)	1	If blank mark on Allow does not increase Not 2p M3 dependent upon a reasonable
				attempt at M2
1	(e)	Boron/B or oxygen/O/ O ₂	1	

Question	Marking Guidance	Mark	Comments
5(a)	$\begin{array}{rcl} \text{Li}(g) \rightarrow & \text{Li}^{+}(g) + e^{-}(g) \\ \text{Li}(g) & - e^{-}(g) \rightarrow & \text{Li}^{+}(g) \\ \text{Li}(g) & + & e^{-}(g) \rightarrow & \text{Li}^{+}(g) + & 2e^{-} \end{array}$	1	One mark for balanced equation with state symbols Charge and state on electron need not be shown
5(b)	Increases Increasing nuclear charge / increasing no of protons Same or similar shielding / same no of shells / electron (taken) from same (sub)shell / electron closer to the nucleus / smaller atomic radius	1 1 1	If trend wrong then CE = 0/3 for 5(b). If blank mark on. Ignore effective with regard to nuclear charge
5(c)	Lower Paired electrons in a (4) <u>p</u> orbital (Paired electrons) repel	1 1 1	If not lower then $CE = 0/3$ If incorrect p orbital then $M2 = 0$ If shared pair of electrons $M2 + M3 = 0$
5(d)	Kr is a bigger atom / has more shells / more shielding in Kr / electron removed further from nucleus/ electron removed from a higher (principal or main) energy level	1	CE if molecule mentioned Must be comparative answer QWC
5(e)	2 / two / II	1	
5(f)	Arsenic / As	1	

Question	Marking Guidance	Mark	Comments
5(a)	Macromolecular/giant covalent/ giant molecular / giant	1	If IMF/H-bonds/Ionic/metallic CE =0/3
	atomic		covalent bond between molecules $CE = 0/3$
			If giant unqualified M1 = 0 but mark on
	Many/strong covalent bonds	1	M2 and M3 can only be scored if covalent mentioned in answer
			Ignore metalloid and carbon
			Ignore bp
	Bonds must be broken/overcome	1	Ignore numbers of bonds and references to energy
5(b)	(Simple) molecular	1	QoL
			Do not allow simple covalent for M1
			Giant covalent/ionic/metallic, CE = 0
			If breaking covalent bonds CE= 0/3
	S bigger molecule (than P) or S_8 and P_4 references	1	QoL
			Allow more electrons in sulfur molecule or S_8
			Do not allow S is bigger then P
			Allow S <u>molecule</u> has a bigger <i>M</i> r
			Do not allow contradictions
	So more/ stronger van der Waals' forces (to be broken or overcome)	1	Not just more energy to break

5(c)	Regular arrangement of minimum of 6 particles in minimum of 2 rows		Ignore e- Do not allow ring arrangements OR structures bonded with electrons
	+ charge in each one (of 6) <u>Rows/planes/sheets/layers</u> (of atoms/ions) can slide (owtte) over one another	1 1	Allow +, (1+, 2+ or 3+) in ions/or in words M3 independent If ionic bonding/molecules/IMF/vdw/covalent, penalise M3 Ignore layers of electrons sliding
5(d)	Bigger charge (3+ compared to 1+) OR smaller atom/ion in Al / more protons/bigger nuclear charge More free / <u>delocalised</u> electrons (in Al)/bigger sea of electrons in Al Stronger metallic bonding/ stronger (electrostatic) attraction between the (+) ions or nuclei and the (delocalised) electrons (or implied)	1 1 1	 CE = 0 if molecules, ionic, covalent, IMF (Allow Al²⁺) Accept 2 or 3 delocalised electrons compared to 1 in Na Must be implied that the electrons are the delocalised ones not the electrons in the shells. Accept converse arguments

Question	Marking Guidance	Mark	Comments
2(a)	Lithium / Li	1	Penalise obvious capital I (second letter).
2(b)(i)	Increase / gets bigger	1	Ignore exceptions to trend here even if wrong
2(b)(ii)	Boron / B Electron removed from (2) <u>p</u> orbital /sub-shell / (2)p electrons removed Which is higher in energy (so more easily lost) / more shielded (so more easily lost) / further from nucleus	1 1 1	If not Boron, CE = 0/3 If p orbital specified it must be 2p
2(c)	C / carbon	1	
2(d)	Below Li 2 (d) Draw a cross on the diagram to show the meilting point of nitrogen. 5000 4500 4000 3500 3000 2500 2000	1	The cross should be placed on the diagram, on the column for nitrogen, below the level of the cross printed on the diagram for Lithium.

2(e)	Macromolecular / giant molecular / giant atomic	1	Allow giant covalent (molecule) = 2
	Covalent bonds in the structure	1	
	Strong (covalent) <u>bonds must be broken or overcome /</u> (covalent) <u>bonds need a lot of energy to break</u>	1	Ignore weakening / loosening bonds
			If ionic / metallic/molecular/ dipole dipole/ H bonds/ bonds between molecules, $CE = 0/3$
			Ignore van der Waals forces
			Ignore hard to break

Question	Marking Guidance	Mark	Comments
6(a)	Carbon / C Fewest protons / smallest nuclear charge / least attraction between protons (in the nucleus) and electrons / weakest nuclear attraction to electrons Similar shielding	1 1 1	If M1 incorrect, CE = 0/3 Allow comparative answers. Allow converse answers for M2 Allow same shielding.
6(b)	<u>Increase</u> Oxygen / O <u>Paired</u> electrons in a (2) <u>p</u> orbital (Paired electrons in a p orbital) repel	1 1 1 1	If not oxygen, then cannot score M2, M3 and M4 If paired electrons in incorrect p orbital, lose M3 but can award M4
6(c)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1	Ignore state symbols for electron.
6(d)	(More energy to) remove an electron from a (more) positive ion / cation	1	Allow electron closer to the nucleus in the positive ion.
6(e)	Lithium / lithium / Li	1	If formula given, upper and lower case letters must be as shown.

Question	Marking Guidance	Mark	Comments
2(a)(i)	Higher than P	1	
2(a)(ii)	1s ² 2s ² 2p ⁶ 3s ¹	1	Allow any order
2(a)(iii)	$\begin{array}{rcl} AI^{+}(g) \ + \ \mathbf{e}^{\ (\cdot)} &\longrightarrow & AI^{2+}(g) \ + \ 2\mathbf{e}^{(\cdot)} \\ \hline & \boldsymbol{OR} \\ AI^{+}(g) &\longrightarrow & AI^{2+}(g) \ + \ \mathbf{e}^{(\cdot)} \\ \hline & \boldsymbol{OR} \\ AI^{+}(g) \ - \ \mathbf{e}^{(\cdot)} &\longrightarrow & AI^{2+}(g) \end{array}$	1	
2(a)(iv)	<u>Electron</u> in Si (removed from) (3)p orbital / electron (removed) from higher energy orbital or sub-shell / <u>electron</u> in silicon is more shielded	1	Accept converse arguments relating to Al Penalise incorrect p-orbital
2(b)	Sodium / Na <u>Electron</u> (removed) from the 2 nd shell / 2p (orbital)	1 1	Allow Na ⁺ M2 is dependent on M1 Allow electron from <u>shell</u> nearer the nucleus (so more attraction)
2(c)	Silicon / Si	1	Not SI
2(d)	Heat or energy needed to overcome the attraction between the (negative) electron and the (positive) nucleus or protons Or words to that effect eg electron promoted to higher energy level (infinity) so energy must be supplied	1	Not breaking bonds QoL

Question	Marking Guidance	Mark	Comments
1(a)	Silicon / Si	1	If not silicon then $CE = 0/3$
	<u>covalent</u> (bonds)	1	M3 dependent on correct M2
	Strong or many of the (covalent) bonds need to be <u>broken</u> / needs a lot of energy to <u>break</u> the (covalent) bonds	1	Ignore hard to break
1(b)	Argon / Ar	1	If not argon then CE = $0/3$. But if Kr chosen, lose M1 and allow M2+M3
	Large(st) number of protons / large(st) nuclear charge	1	Ignore smallest atomic radius
	Same amount of shielding / same number of shells / same number of energy levels	1	Allow similar shielding
1(c)	Chlorine / Cl	1	Not Cl ₂ , Not C L, not Cl ²

Question	Marking Guidance	Mark	Comments
	General increase	1	If not increase then CE
5(a)	Greater nuclear charge / more protons	1	
	Same shielding / electrons added to same shell	1	allow similar
	Stronger attraction (from nucleus) for outer electron(s)	1	Allow electron in outer shell
			CE if not AI or S
5(b)	Aluminium / Al (lower than Mg) (outer) electron in (3) <u>p</u> orbital / sub-shell (level) (3p) higher in energy or	1 1 1	If 2p or 4p orbital lose M2 and M3 allow more shielded or weaker nuclear attraction M3 is dependent on M2
	Sulfur / S (lower than P) (outer) electrons in (3) <u>p</u> orbital begin to pair repel		If 2p or 4p orbital lose M2 and M3 allow 2 electrons in (3) <u>p</u> M3 is dependent on M2
5()	Sulfur / S	1	CE if not S
5(C)	Large jump after 6 th or between 6 th and 7 th	1	Do not allow M2 if atom/ion is removed

5(d)	Silicon	1	CE if not Si
	Giant covalent structure / macromolecule	1	
	Covalent (bonds)	1	Giant covalent scores M2 and M3
	Many / strong (covalent bonds) or (covalent bonds) need lots of energy to break	1	
			CE for M2-M4 if molecules / metallic / ionic / IMFs mentioned