Kinetics Answers

Question	Marking Guidance	Mark	Comments
2(a)(i)	 M1 The peak of the new curve is <u>displaced to the right</u>. M2 All of the following are required The new curve starts at the origin The peak of the new curve is <u>lower</u> than the original <u>and</u> the new curve only crosses the original curve <u>once</u> <u>and</u> an attempt has been made to draw the new curve correctly towards the energy axis but not to touch the original curve the new curve must not start to diverge from the original curve 	2	M1 is low demand M2 is higher demand.
2(a)(ii)	M1 Increase in the number / proportion of molecules with $E \ge E_a$ OR more molecules have $E \ge E_a$ OR more molecules have sufficient energy to react M2 More effective / productive / successful collisions	2	Ignore "molecules have more energy" Ignore "more energetic collisions" Ignore "molecules gain activation energy" Ignore "more collisions" Accept "particles" for "molecules" but NOT "atoms" Ignore "chance of collision"; this alone does not gain M2
2(b)(i)	Iron <i>OR</i> Fe	1	

2(b)(ii)	M1 Catalysts provide an alternative route / pathway / mechanism	2	For M1, not simply "provides a surface" alone
	(in this case) surface adsorption / surface reaction occurs.		
	M2 that has a <u>lower activation energy</u> <i>OR</i>		For M2, the candidate may use a definition of activation energy without referring to the term
	lowers the activation energy		

Question	Marking Guidance	Mark	Comments
1(a)	 Award in either order for curve M1 curve is steeper than original and starts at the origin M2 curve levels at the top line on the graph 	2	"Steeper" requires line to be on the left of the original line, starting from the origin
1(b)	Award in either order for curveM1 curve is shallower than original and starts at the originM2 curve levels at the first line on the graph	2	"Shallower" requires line to be on the right of the original line, starting from the origin
1(c)	M1 curve would be steeper than originalM2 curve levels at the <u>same original volume</u> of O₂	2	"Steeper" requires line to be on the left of the original line, starting from the origin
1(d)	 M1 The (concentration / amount of) H₂O₂ or reactant falls / decreases / used up OR The number of H₂O₂ or reactant molecules/ particles falls / decreases M2 The <u>rate</u> of reaction / <u>rate</u> of decomposition / <u>rate</u> of formation of oxygen / <u>frequency of collisions</u> / (effective) <u>collisions in a given time</u> decreases / is slower 	2	Mark independently

1(e)(i)	$2H_2O_2 \longrightarrow 2H_2O + O_2$	1	Ignore state symbols Accept only this equation or its multiples Extra species must be crossed through
1(e)(ii)	hydrogen bromide / it does not appear in the overall equation	1	
	OR		
	hydrogen bromide / it is not <u>used up</u> in the reaction / <u>unchanged</u> <u>at the end</u> of the reaction		
	OR		
	hydrogen bromide / it is regenerated / re-formed (in Step 2)		

Question	Marking Guidance	Mark	Comments
3(a)	Number / proportion / percentage / fraction of molecules	1	Ignore "particles"
3(b)	None <i>OR</i> no effect <i>OR</i> no change	1	
3(c)	X	1	
3(d)	Answers in either orderM1collision OR collideM2collision / molecules / particleswith the activation energy OR with $E \ge E_{act}$ OR with sufficient /enough energy OR with the minimum energy OR with the correct orientation	2	Mark independently Ignore "correct" amount of energy
3(e)	A small increase in temperature results in <u>many more / much</u> <u>higher proportion of / a lot more / significantly more molecules /</u> <u>particles / collisions</u> with $E \ge E_{act}$ / energy greater than the <u>activation energy / sufficient energy / enough energy / minimum</u> <u>energy to react</u> (compared with a small increase in concentration)	1	Not just "more molecules with $E \ge E_{act}$ " The answer must convey that the increase is significant Accept reference to "atoms", molecules", "particles" Ignore "species"

Question	Marking Guidance	Mark	Comments
3(a)	 M1 On the <u>energy axis</u> E_{mp} at the maximum of <u>the original peak</u> M2 The peak of their new curve is <u>displaced to the left and higher</u> than the original M3 All of the following are required The new curve starts at the origin and should begin to separate from the original almost immediately <u>and</u> the new curve crosses the original curve <u>once</u> <u>and</u> an attempt has been made to draw the new curve correctly towards the energy axis <u>below the original curve</u> but not to touch the original curve or the axis 	3	M1 The limits for the horizontal position of E_{mp} are defined as above the word "the" in the sentence below the graph.
3(b)	The rate of reaction decreases as the temperature decreases because M1 <u>A decrease in the number / proportion of molecules with $E \ge E_a$</u> <i>OR</i> fewer molecules have $E \ge E_a$ <i>OR</i> fewer molecules have sufficient / enough energy to react / decompose M2 <u>Fewer effective / productive / successful collisions in a given time</u> / given period <i>OR</i> fewer frequent effective / productive / successful collisions <i>OR</i> lower rate of effective / productive / successful collisions	2	In M1 Ignore "molecules have less energy". Ignore "less energetic collisions". Ignore "molecules do not gain activation energy". Ignore "fewer collisions". Credit "particles" for "molecules" but NOT "atoms". Ignore "chance of collision"; this alone does not gain M2

Question	Marking Guidance	Mark	Comments
1(a)(i)	<u>Change</u> in <u>concentration</u> (of a substance / reactant / product) in unit <u>time</u> / given <u>time / per (specified) unit of time</u> OR <u>Amount of substance formed / used up</u> in unit <u>time</u> / given <u>time</u> / per (specified) unit of time	1	This may be written mathematically OR may refer to the gradient of a graph of <u>concentration /</u> <u>volume</u> against <u>time</u> Ignore additional information including reference to collisions
1(a)(ii)	At W M1 (QoL) The <u>rate / it is zero</u> M2 The <u>magnesium</u> has all reacted / has been used up OR No more collisions possible between <u>acid and Mg</u> OR	2	Ignore reference to the acid being used up
	Reaction is complete / it has stopped <i>OR</i> No more hydrogen / product is produced		

1(a)(iii)	M1	2	
	<u>Twice / double</u> as many <u>particles / hydrogen ions (</u> in a given volume)		Penalise reference to (hydrochloric acid) molecules in M1
	OR		Penalise reference to "HCI particles" in M1
	Twice / double as much hydrochloric acid		
	M2		
	<u>Twice / double as many effective / successful collisions</u> (in a given time)		
	OR		
	<u>Twice / double</u> as many collisions with either <u>sufficient</u> energy to react OR with $E \ge Ea$		
	OR		
	double the successful / effective collision frequency		
1(b)(i)	The activation energy is the <u>minimum energy</u> for a reaction to go / start	1	
	OR		
	Minimum energy for a successful/ effective collision		
1(b)(ii)	M1 Products lower than reactants on the profile	2	Mark independently
	M2 Activation energy (E_a) shown and labelled correctly from reactants to peak of curve		

Question	Marking Guidance	Mark	Comments
2(a)	Amount / number / proportion / percentage / fraction / moles of molecules / particles	1	Penalise an incorrect qualification of the number eg NOT number of molecules with E greater than Ea Not 'atoms'.
2(b)	There are no molecules / particles with zero energy OR All of the molecules / particles are moving / have some energy	1	Not 'atoms'. The answer should relate the energy to the molecules.
2(c)	C (The most probable energy)	1	

2(d)	M1 The peak of the new curve is <u>displaced to the right</u> and <u>lower</u> than the original	2	
	M2 All of the following needed		
	The new curve starts at the origin and should begin to separate from the original almost immediately		
	and the new curve only crosses the original curve once		
	 <u>and</u> the total area under the new curve is <u>approximately</u> the same as the original 		
	 <u>and</u> an attempt has been made to draw the new curve correctly towards the axis <u>above the original curve</u> but not to touch the original curve 		
2(e)	None / no effect / stays the same	1	

7(c)	M1 q = m c ΔT	3	Award full marks for correct answer
	OR q =150 × 4.18 × 8.0		In M1 , do not penalise incorrect cases in the formula
	M2 = (±) 5016 (J) <i>OR</i> 5.016 (kJ) <i>OR</i> 5.02 (kJ) (also scores M1)		Penalise M3 ONLY if correct numerical answer but sign is incorrect; (+)1114.6 to (+)1120 gains 2 marks
			Penalise M2 for arithmetic error and mark on
	M3 This mark is for dividing correctly the number of kJ by the number of		If $\Delta T = 281$; score q = m c ΔT only
	moles and arriving at a final answer in the range shown. Using 0.00450 mol		If $c = 4.81$ (leads to 5772) penalise M2 ONLY and mark on for M3 = -1283
	therefore $\Delta H = -1115$ (kJ mol ⁻¹)		
	<i>OR</i> <u>− 1114.6</u> to <u>− 1120</u> (kJ mol ⁻¹)		Ignore incorrect units in M2
	Range (+)1114.6 to (+)1120 gains 2 marks BUT – 1110 gains 3 marks and +1110 gains 2 marks AND – 1100 gains 3 marks and +1100 gains 2 marks		If units are given in M3 they <u>must be either kJ or</u> <u>kJ mol⁻¹ i</u> n this case

Question	Answers	Mark	Additional Comments/Guidance
5(a)(i)	curve drawn from origin with peak clearly lower and to right.	1	new curve crosses original once only, finishes above original and does not clearly curve up IGNORE relative areas
5(a)(ii)	(Relative areas under curves indicate) <u>many</u> (owtte) more molecules with E greater than or equal to Ea (at higher T) or reverse argument	1	ALLOW 'particles' IGNORE 'atoms'
	(large) increase in (number of) <u>successful</u> (owtte) <u>collisions per unit time</u>	1	OR ' <u>frequency</u> of successful <u>collisions'</u>
	Yield increases	1	Yield decreases/stays the same CE = 0 If not answered mark on
	more moles/molecules (of gas) on left/fewer on right/3 on left 1 on right	1	
5(b)(i)	equilibrium shifts/moves (to right) to reduce pressure/oppose higher pressure	1	No M3 if 'more moles on right' in M2 IGNORE 'favours' NOT just 'oppose the change' QoL means that M3 is only awarded if these ideas are clearly linked in one statement
	Higher T would increase rate but decrease yield/make less methanol	1	If no mention of both rate AND (idea of) yield max 1
5(b)(ii)	OR Lower T decreases rate but increases yield;		
	Chosen T is a compromise/balance (between rate and yield) owtte	1	
Total		8	

	Total		17	
	8(c)	record time to measure sensible observation about the amount of AgCl ppt Rate = amount/time OR proportional to 1/time OR reference to shorter time = higher rate/longer time = lower rate	1	 e.g. first appearance of ppt / ppt obscures mark / reading on a colorimeter IGNORE colour of ppt ALLOW silver mirror NOT reference to same time if describing method based on timing how long (for ppt to form) ALLOW gravimetric method based on same time for each experiment ALLOW greater mass = higher rate if gravimetric method
		haloalkane (in beaker/flask) in each experiment same temp OR same [AgNO ₃] each time	1	IGNORE inappropriate volumes
[Same volume/amount of $AaNO_{1}(aa)$ added to same volume/amount/no_ of drops of	1	both volume references needed